Decoders
            terratorch.models.decoders.fcn_decoder
#
    
            FCNDecoder
#
    
              Bases: Module
Fully Convolutional Decoder
            __init__(embed_dim, channels=256, num_convs=4, in_index=-1)
#
    Constructor
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                embed_dim
             | 
            
                  _type_
             | 
            
               Input embedding dimension  | 
            required | 
                channels
             | 
            
                  int
             | 
            
               Number of channels for each conv. Defaults to 256.  | 
            
                  256
             | 
          
                num_convs
             | 
            
                  int
             | 
            
               Number of convs. Defaults to 4.  | 
            
                  4
             | 
          
                in_index
             | 
            
                  int
             | 
            
               Index of the input list to take. Defaults to -1.  | 
            
                  -1
             | 
          
            terratorch.models.decoders.identity_decoder
#
    Pass the features straight through
            IdentityDecoder
#
    
              Bases: Module
Identity decoder. Useful to pass the feature straight to the head.
            __init__(embed_dim, out_index=-1)
#
    Constructor
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                embed_dim
             | 
            
                  int
             | 
            
               Input embedding dimension  | 
            required | 
                out_index
             | 
            
                  int
             | 
            
               Index of the input list to take.. Defaults to -1.  | 
            
                  -1
             | 
          
            terratorch.models.decoders.upernet_decoder
#
    
            PPM
#
    
              Bases: ModuleList
Pooling Pyramid Module used in PSPNet.
            __init__(pool_scales, in_channels, channels, align_corners)
#
    Constructor
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                pool_scales
             | 
            
                  tuple[int]
             | 
            
               Pooling scales used in Pooling Pyramid Module.  | 
            required | 
                in_channels
             | 
            
                  int
             | 
            
               Input channels.  | 
            required | 
                channels
             | 
            
                  int
             | 
            
               Channels after modules, before conv_seg.  | 
            required | 
                align_corners
             | 
            
                  bool
             | 
            
               align_corners argument of F.interpolate.  | 
            required | 
            forward(x)
#
    Forward function.
            UperNetDecoder
#
    
              Bases: Module
UperNetDecoder. Adapted from MMSegmentation.
            __init__(embed_dim, pool_scales=(1, 2, 3, 6), channels=256, align_corners=True, scale_modules=False)
#
    Constructor
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                embed_dim
             | 
            
                  list[int]
             | 
            
               Input embedding dimension for each input.  | 
            required | 
                pool_scales
             | 
            
                  tuple[int]
             | 
            
               Pooling scales used in Pooling Pyramid Module applied on the last feature. Default: (1, 2, 3, 6).  | 
            
                  (1, 2, 3, 6)
             | 
          
                channels
             | 
            
                  int
             | 
            
               Channels used in the decoder. Defaults to 256.  | 
            
                  256
             | 
          
                align_corners
             | 
            
                  bool
             | 
            
               Wheter to align corners in rescaling. Defaults to True.  | 
            
                  True
             | 
          
                scale_modules
             | 
            
                  bool
             | 
            
               Whether to apply scale modules to the inputs. Needed for plain ViT. Defaults to False.  | 
            
                  False
             | 
          
            forward(inputs)
#
    Forward function for feature maps before classifying each pixel with Args: inputs (list[Tensor]): List of multi-level img features.
Returns:
| Name | Type | Description | 
|---|---|---|
feats |             
                  Tensor
             | 
            
               A tensor of shape (batch_size, self.channels, H, W) which is feature map for last layer of decoder head.  | 
          
            psp_forward(inputs)
#
    Forward function of PSP module.